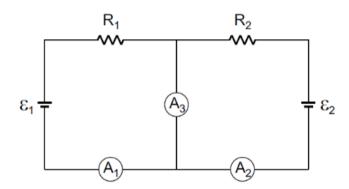
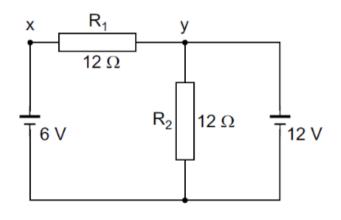


ELETRODINÂMICA - Leis de Kirchhoff - I

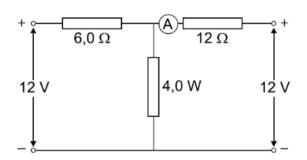

Professor Epifânio Galan

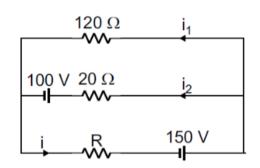
1. Sobre o esquema a seguir, sabe-se que $i_1 = 2A$; $U_{AB} = 6V$; $R_2 = 2\Omega$ e $R_3 = 10\Omega$. Então, a tensão entre C e D, em volts, vale:

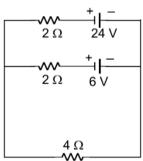

- A) 10.
- B) 20.
- C) 30.
- D) 40.
- E) 50.

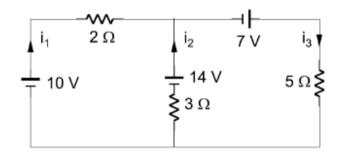
2. Os valores dos componentes do circuito da figura abaixo são: ϵ_1 = 6V; ϵ_2 = 12V; R_1 = 1k Ω ; R_2 = 2k Ω .

Os valores medidos pelos amperímetros A_1 , A_2 e A_3 são, respectivamente, em mA:

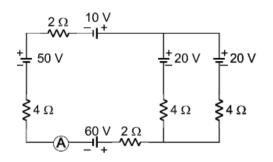

- A) 1, 2 e 3.
- B) 6, 12 e 18.
- C) 6, 6 e 12.
- D) 12, 12 e 6.
- E) 12, 12 e 24.
- **3.** No circuito representado no esquema a seguir, as fontes de tensão de 12V e de 6V são ideais; os dois resistores de 12 ohms, R_1 e R_2 , são idênticos; os fios de ligação têm resistência desprezível. Nesse circuito, a intensidade de corrente elétrica em R_1 é igual a


- A) 0,50 A no sentido de X para Y.
- B) 0,50 A no sentido de Y para X.
- C) 0,75 A no sentido de X para Y.
- D) 1,0 A no sentido de X para Y.
- E) 1,0 A no sentido de Y para X.

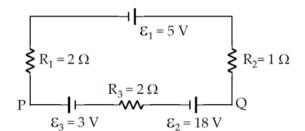

4. Considere o circuito e os valores representados no esquema a seguir. O amperímetro ideal A deve indicar uma corrente elétrica, em ampères, igual a


- A) 1,3.
- B) 1,0.
- C) 0,75.
- D) 0,50.
- E) 0,25.
- **5.** No circuito abaixo, os geradores são ideais, as correntes elétricas têm os sentidos indicados e $i_1 = 1A$. O valor da resistência R é

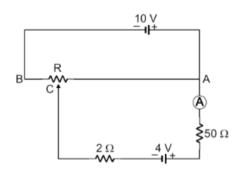
- A) 3Ω.
- B) 6Ω.
- C) 9Ω.
- D) 12Ω.
- E) 15Ω.
- **6.** Liga-se uma bateria de força eletromotriz 24 V e resistência interna 2Ω a outra bateria de 6V e 2Ω e um resistor de 4Ω , conforme mostra a figura. A intensidade de corrente elétrica que atravessa o resistor é de


- A) 2A.
- B) 3A.
- C) 4A.
- D) 5A.
- E) 6A.
- 7. No circuito abaixo, as intensidades das correntes i1, i2 e i3, em ampères, valem, respectivamente

- A) 1,0; 2,5; 3,0.
- B) 1,0; 1,5; 2,0.
- C) 1,0; 2,0; 2,5.
- D) 1,0; 2,0; 3,0.
- E) 2,0; 3,0; 1,0.



8. O amperímetro A indicado no circuito é ideal, isto é, tem resistência interna praticamente nula. Os fios de ligação têm resistência desprezível. A intensidade da corrente elétrica indicada no amperímetro A é de


- A) 1,0A.
- B) 2,0A.
- C) 3,0A.
- D) 4,0A.
- E) 5,0A.

9. Considere o circuito da figura apresentada, onde estão associadas três resistências (R_1 , R_2 , e R_3) e três baterias (ϵ_1 , ϵ_2 e ϵ_3) de resistências internas desprezíveis. Um voltímetro ideal colocado entre Q e P indicará

- A) 11V.
- B) 5V.
- C) 15V.
- D) 1V.
- E) zero.

10. No circuito dado, quando o cursor do reostato R é colocado no ponto C, o amperímetro não acusa passagem de corrente elétrica. Qual a diferença de potencial entre os pontos C e B?

- A) 4V.
- B) 6V.
- C) 10V.
- D) 16V.
- E) 20V.

Gabarito

- 1. E.
- 2. C
- 3. B.
- 4. D.
- 5. E.

- 6. B.
- 7. D.
- Q R
- 9. A.
- 10. B